

Why MINERVA?

- MINER vA is a compact, fully active neutrino detector designed to study neutrino-nucleus interactions with unprecedented detail
- The detector will be placed in the NuMI beam line upstream of the MINOS Near Detector
- MINERvA is unique in worldwide program
 - The NuMI intensity provides
 - Opportunity for precision neutrino interaction measurements
 - Wide range of neutrino energies
 - Detector with several different nuclear targets allows 1st study of neutrino nuclear effects
 - Crucial input to current and future oscillation measurements
- Stage 1 Approval April 2004
- First Director's Review January 2005
- CD0 recently (CD-1/CD-2 DOE Review early next summer)
- Director's Review Dec 13-15 (another one in the spring)

Basic Detector

- MINER vA proposes to build a low-risk detector with simple, wellunderstood technology
- Active core is segmented solid scintillator
 - Tracking (including low momentum recoil protons)
 - Particle identification
 - 3 ns (RMS) per hit timing (track direction, identify stopped *K*±)
- Core surrounded by electromagnetic and hadronic calorimeters
 - Photon (π⁰) & hadron energy measurement
- MINOS Near Detector as muon catcher

Overview of MINERvA Detector

WBS & Universities

- 1 Scintillator Extrusion Anna Pla-Dalmau (FNAL, NIU, Pl Victor Rykalin)
- 2 WLS Fibers Howard Budd (Rochester, PI Kevin McFarland)
- 3 Scintillator Plane Assembly Jeff Nelson (William& Mary, also Hampton University PI Cynthia Keppel)
- 4. Clear Fiber Cables Howard Budd (Rochester, PI Kevin McFarland)
- 5 PMT Boxes Tony Mann (Tufts, also Rutgers PI Ron Ransome)
- 6 PMT Procurement & Testing Ioana Niculescu (James Madison University) and George Tzanakos (University of Athens, Greece)
- 7 Electronics & DAQ Dave Casper (Univ. Ca. Irvine, also University of Pittsburg PI Vittorio Paolone)
- 8 Frame, Absorbers & Stand Jim Kilmer (FNAL)
- 9 Module Assembly & Installation Jim Kilmer (FNAL), Bob Bradford (Rochester PI Kevin McFarland)
- 10 Project Management Debbie Harris (FNAL)

Basic Detector Geometry

108 modules

	Module/Frame	Scintillator Planes
Nuclear Targets	18	36
Active Target	60	120
DS ECAL	10	20
DS HCAL	20	20
Totals	108	196

- Downstream
 Calorimeter:
 20 modules, 2% active,
 sheets of lead (ECAL) or
 steel (HCAL) between
 scintillator planes
- 2 thin lead "rings" for side ECAL

MINERvA Detector Plane

❖ 30,272 channels

- 80% in inner hexagon
- 20% in Outer detector
- 473 M-64 PMTs (64 channels)
- 1 wave length shifting fiber per scintillator, which transitions to a clear fiber and then to the PMT
- 128 pieces of scintillator per Inner Detector plane
- ❖ 8 pieces of scintillator per Outer Detector tower, 6 OD detector towers per plane

MINERVA Optics

(Inner detector scintillator and optics shown, Outer Detector has similar optics but rectangular scintillator)

MINERVA Electronics

Front End Boards

- One board per PMT
- High Voltage (700-800V)
- Digitization via Trip Chips, taking advantage of D0 design work
- Timing

CROC Boards and DAQ

- One board per 48 PMT's
- Front-end/computer interface
- Distribute trigger and synchronization
- 3 VME crates & one DAQ computer

Power and rack protection

- Uses 48V power
- 7kW needed

Highlights of each Fiscal Year

- FY06-FY07: R&D and Assembly and Testing Process Prototyping
 - Make co-extruded scintillator and test
 - R&D on making bulk clear fiber cables
 - WLS fiber qualification and prototypes
 - Scintillator Plane assembly R&D, prototype plane and module assembly
 - PMT box assembly R&D and prototypes
 - Electronics R&D continues: Front-End board, CROC module
 - PMT testing and alignment procedures defined and tested
 - Outer Detector frame prototypes and Module assembly R&D
 - 20 Module Prototype constructed in FY07
- FY08: construction begins
 - Remaining R&D: mostly electronics design
 - Bulk purchases: PMT's, WLS fiber, Clear fiber, PMT box components, steel and lead purchases
- FY09: complete construction, begin installation
 - Buy LV system, remaining PMT's, install detector stand, modules, PMT boxes, electronics, cables

Overview of Work by Fund Types

- R&D Includes all design work and prototyping:
 - Scintillator and fiber prototyping and testing
 - Preliminary purchase of 10 PMTs to determine necessary specifications for bulk purchase and to understand bulk testing procedures
 - Two electronics & DAQ systems for prototyping and testing PMTs
 - One full module prototype (from scintillator through DAQ and module mapper)
 - Prototype Detector Stand
- MIE Includes:
 - Construction of Detector proper and currently some spares
- Installation & Infrastructure Includes:
 - Installation tasks in the MINOS Hall
 - Generic infrastructure costs that would be necessary for any future experiment in the NuMI near hall (power panels, cooling, etc.)

Organization Chart

